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Abstract
Ab initio methods allow a more or less straightforward prediction of numerous physical
properties of solids, but require the knowledge of their crystal structure. The evolutionary
algorithm USPEX, developed by us in 2004–2006, enables reliable prediction of the stable crystal
structure without relying on any experimental data. Numerous tests (mostly for systems with up
to 28 atoms in the unit cell, and a few tests with up to 128 atoms/cell) showed a success rate of
nearly 100%. USPEX has resulted in a number of predictions of hitherto unknown stable
structures. We give a short overview of the method, introducing some new developments and
results, and discuss a few alternative approaches. The method is illustrated by a test on an 80 atom
supercell of MgSiO3 and by the search for new materials with compositions Al13K and Al12C.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The search for the stable crystal structure from the chemical
composition has long been regarded as a difficult problem [1],
central for materials design and for understanding the
behaviour of materials at extreme conditions. Many
approaches have been used to solve this problem. The
simplest one is to explore thermodynamic properties of a
list of candidate structures (which can be made of known
structures of analogous materials, or new structures guessed
using chemical intuition), and this is still perhaps the most
widely used approach. Problems arise surprisingly often—
almost every time when a totally unexpected and hitherto
unknown structure is actually stable (only sometimes can a new
structure be obtained from previously known ones, e.g. if there
is a low-energy transition pathway between the structures).
Some such cases will be illustrated below. A somewhat similar,
but much more advanced, approach involves data mining [2],
which derives rules of stability of crystal structures from a
large set of ab initio calculations. A number of intuitive
schemes have been developed (e.g. ideas of structure diagrams,
polyhedral clusters—[3]), but their application usually requires
a large experimental data set, and/or good understanding of the
compound.

3 Author to whom any correspondence should be addressed.

From the materials design perspective, it may be more
desirable to have a method that requires no prior knowledge
or assumptions about the system. Below we briefly discuss
our personal views on a few such algorithms. Simulated
annealing [4–7] is at first appealing, because this algorithm
was inspired by crystallization through annealing—but its
applications remain rather limited. Minima hopping [8] and
metadynamics [9–11] show good promise. Recently it was
shown that even relaxing randomly produced structures can
deliver the stable structure [12] in a feasible time, but only for
systems containing a small number of atoms in the unit cell.
Finally, we will discuss our evolutionary algorithm USPEX
(Universal Structure Predictor: Evolutionary Xtallography)
[13–15] and illustrate it with a few examples. Successes of all
these different methods show that non-empirical prediction of
stable crystal structures from chemical composition is possible
and is very promising for materials design.

2. Simulated annealing

Simulated annealing, being a modified version of the stochastic
hill-climber, takes a random step from the current position and
accepts it with a certain probability. This probability p is
derived from the change in fitness (�E) and the ‘temperature’
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T , e.g. as

p = exp

(
− �E

kBT

)
, (1)

where kB is the Boltzmann constant. The temperature starts
at a high value, making the search more or less a random
walk (depending on exact implementation), and decreases
during the run, coming ever closer to the hill-climber (where
only better solutions get accepted). Simulated annealing is
often used as a benchmark, due to its fast implementation,
or when the goal is not to find the very best, but just a
good solution. For application to crystal structure prediction
the main drawback is that the algorithm easily gets stuck in
local minima. The barriers between minima are usually very
large compared to the energy differences—thus, to overcome
a barrier (not just jumping over it, but overcoming it), steps
with large decrease in fitness need to be made. Since the
acceptance probability decays exponentially with decrease of
fitness between steps and temperature (equation (1)), a high
starting temperature and extremely slow cooling are required.
This makes simulations expensive, forcing one to use cheap
fitness functions, rather than ab initio energies. Furthermore,
while for every optimization problem a careful balance
between exploitation of information obtained during the run
and exploration of new information is crucial, simulated
annealing barely exploits any information obtained (except the
current position and fitness), which seems to be unfavourable
for crystal structure prediction. Successful early showcases of
simulated annealing include the determinations of structures of
framework materials [4] and NbF4 [5] using experimental cell
parameters and heuristic fitness functions, extensive structure
search for silica polymorphs [6] and several test systems [7]
using no information on the unit cell and more or less realistic
potentials for the calculation of fitness.

3. Minima hopping

A more promising approach is minima hopping [8]. The
random steps of simulated annealing are replaced by local
optimization to find the local minimum and molecular
dynamics to escape it. This is in itself clever, for it more
efficiently finds the local minimum (using physical gradients)
and most likely transitions via a low-energy saddle-point (such
transitions are likeliest in molecular dynamics). Furthermore,
it includes a tabu, i.e. a list of all previously visited minima
that the system should (in order to maximize the efficiency of
sampling the energy landscape) be discouraged from visiting
again. All visited minima are kept in memory. Whether or
not the current minimum has been visited before feeds back
to the temperature in the molecular dynamics runs. This
allows the algorithm to eventually escape even deep energy
funnels. A problem with this approach is that the number of
steps to the global minimum can vary (possibly by orders of
magnitude) depending on the starting point. Starting from a
good initial guess of the structure (good in the sense of close
by in search space), this may be the most efficient method
available. Starting from a random structure, it can become very
expensive. This algorithm has been applied, e.g., to Lennard-
Jones clusters and a silicon crystal with fixed cell parameters
at two system sizes (64 and 216 atoms/cell) [8].

4. Metadynamics

Another very interesting method is metadynamics [9–11].
Its input includes a starting structure and the relevant order
parameters (usually, the lattice vectors matrix); search is
performed in the order parameter space. At every step, a
Gaussian is added to the free energy surface at the current
position; this discourages the system from visiting the same
state again and therefore acts as a tabu. The next step is
taken in the direction of the steepest descent of the modified
free energy. After sufficiently many steps, the free energy
well is filled with Gaussians and a transition via the lowest
(with very high probability) saddle-point occurs. Not only
does this approach systematically search for the lowest saddle-
point, the path taken in the run directly gives an idealized
transition path. However, metadynamics cannot perform a
global search without a good starting point. The performance
of metadynamics depends on the choice of Gaussian height and
width parameters (their optimal choice is discussed in [10]);
it was found [11] to be advantageous to use anisotropic
Gaussians adapted to the shape of the landscape. In the
usual case of a 6D order parameter (lattice vectors matrix)
metadynamics possesses two interesting properties: (i) the
dimensionality of the problem does not depend on the system
size, which renders relatively large systems (up to several
hundred atoms in the (super)cell) affordable—however, such
a simplification of the problem decreases the success rate,
especially for large systems (where the coupling between the
cell and internal degrees of freedom is weak) so that the
method often produces only amorphous structures, (ii) the use
of cell vectors as order parameters allows one to interpret
predicted transition paths as likely mechanisms of plastic
deformation. Metadynamics has successfully reproduced
the pressure-induced transformation in Si from the diamond
to the simple hexagonal structure [9], found all known
structures of benzene [16], established mechanisms of sluggish
transitions in silica [11, 18], predicted a family of low-enthalpy
polymorphs of MgSiO3 at high pressure and an unexpected
mechanism of plastic deformation of MgSiO3 post-perovskite,
the dominant mineral of the Earth’s core–mantle boundary
layer [17].

5. Evolutionary algorithm USPEX

Evolutionary algorithms are well known in computational
science and, due to their attractiveness for global optimization
problems, have been applied to the prediction of structures of
crystals [19–22], colloids [23] and clusters [24]. The algorithm
developed by Deaven and Ho [24] is, in our view, particularly
interesting as some of its features (real-space representation
of structures, local optimization and spatial heredity) are
similar to our method. Their algorithm has successfully
produced the structure of the C60 buckminsterfullerene, but
to our knowledge has not been tested on hetero-atomic
clusters, nor adapted to crystals. The algorithm of Bush
and Woodley [19–21] was originally developed for crystals
and successfully produced a starting model for solving the
structure of Li3RuO4 [19]. However, systematic tests [20, 21]
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showed that this algorithm very often fails even for rather
simple systems with ∼10 atoms/cell. Other drawbacks are
that this algorithm requires experimental lattice parameters
and simulations are very expensive, unless a cheap and crude
heuristic expression is used for fitness. Unlike the Deaven–
Ho algorithm and USPEX, in this method structures are
represented by binary ‘0/1’ strings and there is no local
optimization.

Our algorithm USPEX takes into account previous
experiences with evolutionary algorithms, both successes and
failures. Structures are represented by floating-point numbers,
with fractional coordinates for the atoms and lattice vectors
matrix describing the periodicity of the structure. USPEX
operates with populations of structures. From a population,
parent structures are selected. The selection probability of each
structure is a function of its fitness rank. A new candidate
structure is produced from parent structures using one of
three operators: (i) Heredity combines spatially coherent slabs
(in terms of fractional coordinates) of two parent structures,
while the lattice vectors matrices are weighted averages of
the two parent lattice vectors matrices. (ii) Permutation
(as in [20, 21]) swaps chemical identities in randomly selected
pairs of atoms. (iii) Mutation distorts the cell shape.
All generated candidate structures are tested against three
constraints—first, all interatomic distances must be above
the specified minimal values; second, cell angles must be
between 60◦ and 120◦; third, all cell lengths must be larger
than a specified value (e.g. diameter of the largest atom).
These constraints help to ensure stability of energy calculations
and local optimization, and remove only redundant and
infeasible regions of configuration space—thus the search is
physically unconstrained. If in violation of these constraints,
the candidate structure is discarded; otherwise, it is locally
optimized (relaxed). The locally optimal structure is recorded
(and used for producing structures of the next generation); the
negative of its energy (or any other relevant thermodynamic
potential) is used as fitness. Local optimization and energy
calculations are done by external codes (currently, USPEX is
interfaced with VASP [25], SIESTA [26] and GULP [27]).
Once a sufficient number of new structures are produced, a new
population is made of (one or more) lowest-enthalpy structures
from the previous population and the new structures produced
using variation operators. The above procedure is repeated in
a loop.

The first generation usually consists of locally optimised
random structures, but it is possible to include user-specified
structures. If lattice parameters are known, runs can be done in
the fixed cell, but this is not required and in most cases we do
simulations with variable cell shape.

One of the reasons for the success of USPEX is that local
arrangements of atoms (spatially coherent pieces of structures)
are partly preserved and combined. This respects the
predominant short-ranged interactions in crystals and exploits
information from the current population. Combination, within
a single heredity-produced structure, of slabs from two parent
structures is reminiscent of the ‘two-phase’ simulation method
used for calculations of melting temperatures. For large
systems it may be advantageous to combine slabs of several

structures. Note, however, that for systems with very few
atoms (or molecules) in the unit cell heredity becomes obsolete
(in the limit of 1 atom/unit cell it is completely useless).
The method has been described in [14, 15]; two new aspects
(specific permutation and cell transformations) are described
below.

The permutation operator now allows specific swaps.
More precisely, the user can specify which types of atoms are
to be interchanged. This is useful for systems with a large range
in degree of chemical similarity between different atom types
(e.g. in aluminosilicates Al–Si exchange is probably more
relevant than Si–O exchange). The original method [14, 15]
swapped all atomic types at random—this allows a more global
search and this capability is retained as an option.

Furthermore, we have implemented a cell transformation,
which optionally is applied to every candidate structure.
The rationale for such a transformation is to further remove
redundancies in the search space. The constraint that the cell
angles be between 60◦ and 120◦ (in simulations we use a
slightly wider interval) does not remove all redundancies and
still allows inconvenient redundant cell shapes to be produced
(e.g. cells with α = β = γ ∼ 120◦ are practically flat). Certain
advantages would be gained by transforming such cells to a
cell shape with shorter cell vectors. Such a transformation can
be done if there is at least one lattice vector whose projection
onto any other cell vector (or onto the diagonal vector of the
opposite face of the unit cell) is greater (by absolute value)
than half the length of that vector, i.e. for pairs a and b, or c
and (a + b) these criteria are

∣∣∣∣a · b
|b|

∣∣∣∣ >
|b|
2

(2a)

∣∣∣∣a · b
|a|

∣∣∣∣ >
|a|
2

(2b)

∣∣∣∣c · (a + b)

|c|
∣∣∣∣ >

|c|
2

(2c)

∣∣∣∣c · (a + b)

|a + b|
∣∣∣∣ >

|a + b|
2

(2d)

e.g. for the criterion (2a) the new vector anew is given by

anew = a − ceil

(∣∣∣∣a · b

|b|
∣∣∣∣
)

(sign(a · b))b. (3)

During this transformation atomic fractional coordinates are
transformed so that the original and the transformed structures
are identical (during the transformation Cartesian coordinates
of the atoms remain invariant).

6. Some illustrations of USPEX

A number of test cases have been presented in [14, 15, 28]. The
first application of USPEX to finding new stable structures was
published in [13], where two high-pressure phases of CaCO3

were found. Both belong to new structure types (i.e. hitherto
unknown structure topologies), one with triangular CO2−

3 ions
(stable at pressures in the range 42–137 GPa and confirmed
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Figure 1. Evolutionary prediction of the structure of MgSiO3 post-perovskite using the experimental cell parameters for an 80 atom supercell.
Top: structure of post-perovskite (showing SiO6 octahedra) obtained within ∼3200 local optimizations. In this simulation, each generation
consisted of 41 structures. Bottom: energies of structures along the evolutionary trajectory.

in the same paper [13]), and the other with chains of CO4

tetrahedra (stable above 137 GPa and confirmed in [29]).
Subsequently, we predicted new structures for high-pressure
phases of oxygen [30], boron [31] and FeS [32]. Here, we
would like to present one non-trivial test and two applications.

The test is the prediction of the structure of MgSiO3 post-
perovskite [33, 34] using a relatively large 80 atom supercell
(with fixed supercell parameters) and an empirical potential
[34] describing interatomic interactions within a partially ionic
model. Local optimization and energy calculations were done
using the GULP code [27]. Previously [28], we have shown
that already in a 40 atom supercell this test is unfeasible
using the simple random sampling (with local optimization):
the correct structure was not produced even after 1.2 × 105

random attempts, but was found with 600–950 attempts of
USPEX. With 80 atoms/cell the problem becomes much
more complicated (one expects an exponential increase of
complexity with increasing system size), but even in this
case we correctly produced the post-perovskite structure in
a reasonable number (∼3200) of local optimizations—see
figure 1. For an even larger test case, a Lennard-Jones crystal
with 128 atoms in the (super)cell, we performed variable-
cell structure search, which has correctly identified the hcp
structure as the ground state within three generations (each
consisting of only 10 structures). For larger Lennard-Jones
systems (256 and 512 atoms/cell) we found the energetically
very slightly less favourable fcc structure.

An interesting possibility has been proposed [35–37] that
a new class of solids can exist, which are made of Al clusters—

ionic insulator (Al13)K with the CsCl-type structure and
icosahedral [35] or cuboctahedral [36] Al−13 ions, and molecular
Al12C with icosahedral [37] Al12C clusters bound together by
weak intermolecular interactions. The rationale for this idea
comes from the observation of icosahedral nanoclusters formed
by boron and aluminium atoms and from the jellium model,
which predicts particularly high stability for clusters with 40
valence electrons and suggests that the icosahedral 40-electron
Al12C and Al−13 groups may have closed-shell electronic
configurations and produce insulating structures. If correct,
this idea could lead to the synthesis of technologically very
interesting materials. Here, we explore these systems (with
the only exception that for Al12C we study only the 13 atom
system, rather than the previously [37] suggested 104 atom
cell) using USPEX. These calculations were performed within
the generalized gradient approximation [38] and the PAW
method [39, 40], using VASP [25] for local optimization and
total energy calculations. In both cases we find very different
structures, which do not contain any well defined clusters.

For Al13K we found that when full cell relaxation is
performed the icosahedral structure (figure 2(a)) spontaneously
transforms into the cuboctahedral one (figure 2(b)). This
is consistent with the conclusion [36] that the cuboctahedral
structure is energetically much more favourable. The
cuboctahedral clusters can be thought of as fragments of the fcc
structure; however, these fragments are not isolated in Al13K,
but form bonds with each other (Al–Al distances within the
cluster are 2.78, and 2.72 Å between the clusters), which makes
this structure metallic and indicates limitations of the jellium
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a b c

Figure 2. Structures of Al13K with 14 atoms/cell: (a) with icosahedral Al13 clusters; (b) with cuboctahedral Al13 clusters; (c) structure
produced by USPEX.

a b

Figure 3. Structures of Al12C with 13 atoms/cell: (a) with
icosahedral clusters; (b) structure produces by USPEX.

model for real systems. The structure found with USPEX
(figure 2(c)) is much lower in energy (by 78 meV/atom), has
no clusters and shows a great perturbation that K atoms exert
on the structure of Al. So far, no Al–K compounds are known
to be stable with respect to decomposition into the elements—
indeed, we find that even the USPEX-produced structure is
72 meV/atom higher in energy than the mechanical mixture
of pure Al and K.

For Al12C, the optimized icosahedral structure (fig-
ure 3(a)) also has bonds between the clusters: Al–Al distances
are 2.67–2.72 Å within the cluster and 2.65 Å between the clus-
ters. Thus, the expectation of a molecular structure made on
the basis of the jellium model is again incorrect. Amazingly,
however, this structure is a semiconductor (DFT band gap is
0.3 eV), but a very unstable one: with USPEX, we found a
much more stable (by 557 meV/atom) structure shown in fig-
ure 3(b). This structure is nothing other than a close-packed
structure, very similar to the fcc structure of pure Al, but with
stacking faults at which C atoms occupy the octahedral voids in
the aluminium close packing. This implies that C impurities in
Al may be correlated with the presence of stacking faults. The
same was found in our evolutionary simulations of Al16C4. We
conclude that the icosahedral coordination (coordination num-
ber 12) is probably too high for C atoms; the octahedral coordi-
nation is more stable. Indeed, C atoms in the stable compound
Al4C3 occupy octahedrally and tetrahedrally coordinated sites.
The USPEX-produced structure of Al12C is metallic and only

39 meV/atom less stable than the mechanical mixture of pure
aluminium and graphite.

The examples of Al12C and Al13K illustrate that
evolutionary crystal structure prediction can result in lower
energy structures than conventional chemical intuition. It
allows thermodynamically feasible and potentially interesting
materials to be predicted with a high degree of certainty.
Results of such simulations can significantly improve our
intuition and guide materials design in promising directions.

7. Conclusions

We have discussed a few different approaches (though a
discussion of all existing or possible methods would not
be practical within the limits of this article), including our
evolutionary algorithm USPEX. They clearly show that, after
many years of research in the area, methods have emerged
that can deal with the problem of crystal structure prediction.
One should keep in mind that the right approach depends on
the system (its size and energy landscape) and the available
information (partial structural information, symmetry etc). We
are suggesting USPEX as the method of choice for crystal
structure prediction of systems with ∼6–40 atoms/cell, where
no information (or just the lattice parameters) is available.
Above 40 atoms/cell runs become expensive (although still
feasible), due to the ‘curse of dimensionality’ eventually
necessitating the use of other ideas within USPEX or another
approach. Fortunately, many (or most) systems of practical
or fundamental interest fall in the size range accessible to
USPEX, opening a wide field of potential applications of this
method in computational materials design.
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